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1.0 Introduction 
Complex models are useful for investigating dynamics of systems where multiple variables 
are interacting in a nonlinear manner. Increasingly these investigations are being conducted 
using probabilistic simulation approaches such that the uncertainty in the understanding of the 
system can be propagated through to the predicted response. Quantitatively assessing the 
importance of inputs becomes important when uncertainty in the response is deemed to be 
unacceptable for the decision at hand. Sensitivity analysis (SA) can be used to help identify 
those inputs for which uncertainty reduction through further information collection will have 
the most impact on reducing uncertainty in the model response. However, sensitivity analysis 
of high dimensional probabilistic models can be computationally challenging. These 
challenges can be met through machine learning methods applied to probabilistic simulation 
results. 

Quantitative assessment of the importance of inputs is necessary when the level of uncertainty 
in the system response exceeds the acceptable threshold specified in the decision making 
framework. One of the goals of sensitivity analysis is to identify which variables have 
distributions that exert the greatest influence on the response. 

2.0 Sensitivity Analysis Approaches 
Sensitivity analysis deals with estimating influence measures for input variables for a given 
model. In general, this estimate can span the qualitative to quantitative spectrum, as well as 
the local to global spectrum. A qualitative SA attempts to provide a relative ranking of the 
importance of input factors without incurring the computational cost of quantitatively 
estimating the percentage of the output variation accounted for by each input factor. A local 
SA involves varying one input factor while holding all other input factors constant and 
assessing the impact on the model output. This is local in the sense that only a minimal 
portion of the full volume of the input factor space is explored (i.e., the point at which the 
input factors are held constant). Although local sensitivity analysis is useful in some 
applications, the region of possible realizations for the model of interest is left largely 
unexplored. Global sensitivity analysis attempts to explore the possible realizations of the 
model more completely. The space of possible realizations for the model can be explored 
through the use of search curves or evaluation of multi-dimensional integrals using Monte 
Carlo methods. However, global sensitivity becomes more difficult as the dimensionality of 
the model increases. 
An example of quantitative local SA approach is differential analysis based on the partial 
derivatives of the model with respect to each input factor. Given a model of the form y = f (X), 
the local relative sensitivity measure, Si, of each input factor, xi, on model output y can be 
calculated as: 
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Quantitative global SA attempts to explore the full volume defined by the input factors and 
then averages over the variation of all input factors to provide an estimate of sensitivity: 

 Si =
varxi [E(y | xi )]

var(y)
 (2) 

The analysis is successful if 1
1
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i
ixS , where p is the number of model parameters.  

2.1 Regression Based Methods 
Quantitative SA approaches include squared standardized regression coefficients (SSRC) and 
squared standardized rank regression coefficients (SSRRC).  

Given a linear regression model of the form 
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the variance of the model output can be estimated as 
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assuming the input factors are independent. If the model output and input factors are 
standardized to a mean of 0 and a variance of 1 then the square of the regression coefficients (

2
iβ ) provides an estimate of Si. Alternatively, regressing the input factors on the ranks of the 

model output can help to fit nonlinearities in the model. 
The coefficient of determination, R2, provides a measure of how far along the continuum 
towards being both quantitative and global these SA methods achieve for a given application. 
The closer the R2 is to one the closer the results are to being both global and quantitative. 1- 
R2 represents the percentage of output variation not accounted for by the SA method. As this 
percentage increases, confidence in the influence estimates is reduced although the resulting 
relative ranking may still be of value. However, at some unknown percentage, the validity of 
the relative rankings also come into question as the potential increases that account for this 
output variation would change the relative rankings. Standardized regression and rank 
correlation methods assume a monotonic linear relationship between the input factors and the 
model output. A low R2 may be reflective of a model structure that does not meet this 
assumption. 
The essence of these approaches is an analysis of variance (ANOVA) decomposition, 
decomposing the response variance into partial variances of increasing dimensionality. The 
total number of terms involved in this type of decomposition is 2p – 1. The dimensionality of 
an ANOVA decomposition analysis becomes prohibitive at even moderate values of p. “the 
larger the number of factors, the higher the likelihood of non-negligible higher-order terms”. 

2.2 Fourier Amplitude Sensitivity Test (FAST) 
Several approaches have been proposed to handle nonlinear, nonmonotonic models. Two of 
these approaches include the Fourier Amplitude Sensitivity Test (FAST) (Saltelli et al. 1999) 
and Sobol’s design of experiment (SDOE) approach (Sobol 1993). These methods provide an 
estimate of the proportion of the variation in the model output due to an input factor through 
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an ANOVA-like decomposition of the output variation. The two methods use a different 
computational strategy for decomposing the partial variances of increasing dimensionality 
(main-effects, two-way interactions, three-way interactions, etc.). In the context of SA, this 
ANOVA decomposition can be described in terms of total sensitivity indices for each input 
factor, STi. An STi for input factor i is calculated as the sum across all main and interaction 
sensitivities that involve the ith input factor: 

+++= ∑∑ ≠≠

n

ikj ijk
n

ij ijiT SSSS
i ,

 (5) 

where Si is the first-order or (main effect) sensitivity index and Sij is the second-order 
(interaction effect) sensitivity index and so on. The total number of sensitivity indices is 2n – 
1, where n is the number of input factors. Because SDOE requires multi-dimensional 
integration to estimate the sensitivity indices, this method can be prohibitive computationally 
for moderately complex models (complexity is defined by the number of input factors, n). 
FAST is a computationally elegant alternative to SDOE for side stepping this “curse of 
dimensionality”. FAST involves simulating input factors using a random phase-shift sampling 
scheme: 

 x(s)i =
1
2
+
1
!
arcsin(sin("is+# i ))  (6) 

where s varies from (-π, π), the ωi‘s are a linearly independent set of frequencies (a unique 
frequency for each input factor), and ζi is a random phase shift chosen uniformly in [0,2π). 
The model output based on this sampling scheme for the input factors shows different 
periodicities at each of the ωi. The amplitude of the oscillation at the ωi‘s and their harmonics 
provides a measure of the model output sensitivity to the corresponding input xi. Fast Fourier 
Transform of the resulting model output provides the pieces from which the ST’s can be 
computed.  

This is accomplished by a Fourier series expansion of y = f (x(s)i) 

 ∑
+∞
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where Aj and Bj are the Fourier coefficients and can be estimated via a fast Fourier transform 
algorithm. 
The spectrum of the Fourier transform is 

 22
jjj BA +=Λ  (8) 

Summing all Λj provides an estimate of the total variance in y 

 ∑
∈

Λ=
Zj

jD̂  (9) 

Summing all Λj excluding the frequency embedded in xi and its associated higher harmonics, 
Z0, provides an estimate of the variance due to the uncertainty in xi 

 D̂i = ! j
j"Z 0
#  (10) 
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The sensitivity of y to xi is then given by 

 DDS ii
ˆ/ˆˆ =  (11) 

Unfortunately, global sensitivity methods such as the FAST require construction of model 
simulations in which a signal is embedded in each input parameter and then the strength of the 
signal in the model realizations is a measure of parameter sensitivity. This requires 
construction of a separate model with distributions for input parameters constructed 
specifically for sensitivity analysis, rather than for uncertainty analysis. The space of possible 
realizations for the model can be explored through the use of search curves or evaluation of 
multi-dimensional integrals using Monte Carlo methods. However, these approaches to global 
sensitivity analysis become more computationally intensive as the dimensionality of the model 
(i.e., the number of model parameters) increases and can be prohitbitive for models that 
include hundreds or thousands of stochastic parameters. 

Results from a typical probabilistic model run design for uncertainty analysis can be difficult 
to use in FAST. A probabilistic model run could be designed for both uncertainty analysis and 
FAST if the cumulative distribution functions (cdf) for all input factors are available 
analytically. Analytic cdf’s are available for distributions such as the uniform and Weibull but 
not for the normal. Thus FAST may not be feasible when model run times are long and when 
uncertainty and sensitivity analysis are both part of the decision process. 

2.3 Machine Learning Approaches 
Because of the computational cost, sensitivity analysis of high-dimensional probabilistic 
models requires efficient algorithms for practical application. Machine learning provides tools 
that allow for the partitioning of the variance in the model response to the input parameters by 
exploration of the realizations from a model run for uncertainty analysis. Two common 
machine learning approaches that could be brought to bear for sensitivity analysis are bagging 
(Breiman 2001) and boosting (Friedman 2001) of regression trees. The advantages of machine 
learning approaches include the ability to fit non-monotonic and non-linear effects, the ability 
to fit parameter interaction effects, and the ability to visualize these effects and their 
interaction across the range of the response and input parameters. Bagging, boosting and other 
machine learning approaches typically produce similar results for noisy data. In the case of 
realizations from a probabilistic process model, each realization is a deterministic evaluation 
of the model and all the stochastic predictor variables are available. As such there is no 
unexplainable variation in the process model response (as is the case with observed data) and 
the choice of machine learning algorithm should have negligible impact of the results of the 
sensitivity analysis. 

2.3.1 Multivariate Adaptive Regression Splines (MARS) 
Multivariate Adaptive Regression Splines (MARS) is a recursive partitioning approach 
(similar to Classification and Regression Trees) that helps deal with the ANOVA 
decomposition “curse of dimensionality”, making estimation of sensitivity indices 
computationally achievable for large n (Friedman, 1991). MARS accomplishes this by 
optimally partitioning or, splitting the model output and input factors into subsets, from which 
splines are fit. The recursive nature of the algorithm results in increasingly local splits of the 
model results in which all significant interaction effects in subregions are found. MARS is 
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able to find and fit only the significant nonlinear and thresholds relationships between the 
model input and output. An input factor’s influence is calculated as the sum of the partial 
residuals removing all main and interaction effects that variable enters. 
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2.3.2 Gradient Boosting Machines (GBM) 
Boosting of decision trees provides a technique that adds to the flexiblity offered by recusive 
partioning methods such as MARS.  The Gradient Boosting Machines (GBM) approach 
utilizes boosting of binary recursive partitioning algorithms that deconstruct a response into 
the relative influence from a given set of explanatory variables (stochastic model input 
parameters). That is, the collection of results (the process model response) is broken up into 
parts, and each part is examined separately. This process is repeated with smaller and smaller 
parts, each analyzed for the relationship between the model inputs (explanatory variables) and 
the results. This sensitivity analysis methodology identifies which stochastic model input 
parameters are most influential in determining the results, such as media concentrations or 
future potential doses. It also identifies the ranges over which the influence is strongest. 

Variance decomposition of the GBM fit is then used to estimate SIs. Under this decomposition 
approach, the goal is to identify the most influential explanatory variables that are identified 
within a model. The necessary degree of model complexity is assessed using validation 
metrics, based on comparison of model predictions, with randomly selected subsets of the 
data. This approach uses the “deviance” of the model as a measure of goodness of fit. The 
concept of deviance is fundamental to classical statistical hypothesis tests (e.g., the common t-
test can be derived using a deviance-based framework) and guides the model selection process 
applied here. 

The GBM fitting approach is based on finding the values of each explanatory variable that 
result in the greatest difference in mean for the corresponding subsets of the response. For 
example, if there were only a single explanatory variable, the GBM would identify the value 
of the explanatory variable that corresponds to a split of the response into two parts. This will 
ensure that no other split would result in corresponding groups of the response variable with a 
greater difference in means. When multiple explanatory variables are present, these multiple 
splits are referred to as “trees.” Each tree results in an estimate (e.g., prediction) of the 
response. As multiple potential trees are evaluated, they are compared to the observed data 
using a loss function. The selection of the loss function is an influential aspect of the GBM 
process, and depends on the distribution of the response variable. For data that are sufficiently 
skewed (e.g., non-normal), the absolute error loss function typically produces more reliable 
results. 

There is a trade-off that exists when considering which loss function to use. The squared-error 
loss function results in better fitting models, but can do so at the expense of introducing 
spurious variables into the model selection process when the response distribution is 
sufficiently skewed. The absolute error loss function produces model predictions with more 
variability, but is less likely to result in the selection of spurious variables in the model. For 
this application, the focus has been on using a deviance-based method to obtain models that 
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identify the most important explanatory variables with respect to the observed variability in 
the response. Therefore, the squared-error function was used in these applications. 

With standard linear regression techniques, it is assumed that the relationship between the 
response and the explanatory variable is a constant (e.g., the parameter estimates in the linear 
model). With the GBM approach, this relationship is not constrained by assumptions of 
linearity, and the partial dependence plots show the data-based estimate of the relationship 
between the response and the explanatory variable. This is useful for understanding the 
influence of changes in a single explanatory variable, when integrating across all other 
explanatory variables. 

2.4 Example 

2.4.1 “Sobol g-function” 
The Sobol g-function (Saltelli et. al. 1999) provides an analytic non-monotonic test function 
for evaluating the performance of various sensitivity analysis approaches. This function is 
defined as: 

 ∏
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where p is the total number of input factors and gi(xi) is given by 
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with 
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and s varing along (-π,π), ϕi ~ U [0,2π), and ωi are specified frequencies. 

The Sobol g function was simulated for p = 8 and frequencies {ωi} = {23, 55, 77, 97, 107, 
113, 121, 125} for a specific set of ai’s. Table 1 provides a comparison of sensitivity indices 
calculated analytically (S) and using of GBM, MARS, FAST, differential analysis (DERIV), 
squared standardized regression coefficients (SSRC), and squared standardized rank 
regression coefficients (SSRRC).  
Note that the GBM, MARS and FAST methods return sensitivity indices that are close to the 
actual sensitivities for the Sobol function (S). The Sobol function is highly non-liniear, hence 
the standardized regression approaches do not work very well. As described, FAST is 
computationally challenging. The difference between MARS and GBM is close, but 
preference is given overall to the GBM approach. 

A goodness-of-fit statistic is also presented in the bottom row of Table 1. This is calculated as 
the standard chi-square good ness –of-fit statistic – the sum of the square of the observed (SA 
method) minus the expected (S value) all divided by the expected value, in which case a small 
value implies a better fit. These goodness-of-fit statistics show that the GBM method 
outperforms the other methods, although the difference is small for GBM and FAST. 
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 a S GBM MARS FAST DERIV SSRC SSRRC 

x1 99 0.0001 0.0003 0.0000 0.0043 0.0037 0.6880 0.7805 

x2 0 0.4227 0.4146 0.4397 0.4287 0.3151 0.0137 0.0036 

x3 9 0.0058 0.0011 0.0084 0.0190 0.0401 0.0003 0.0000 

x4 0 0.4227 0.4200 0.4239 0.4269 0.3169 0.0163 0.0098 

x5 99 0.0001 0.0001 0.0000 0.0006 0.0037 0.0350 0.1152 

x6 4.5 0.0182 0.0335 0.0239 0.0141 0.0787 0.0012 0.0554 

x7 1 0.1304 0.1303 0.1041 0.1063 0.2382 0.0574 0.0344 

x8 99 0.0001 0.0000 0.0000 0.0002 0.0037 0.1881 0.0012 

Goodness-of-Fit statistic 3.3 14.8 3.6 470 7,250 535 

Table 1.  Sensitivity Indices by Sensitivity Analysis Method for Sobol g-function application 
with p = 8. 
 

GBM is run on the realizations themselves, whereas FAST requires set up interms of an 
embedded signal. This makes FAST cumbersome to deal with comparatively. Also, GBM 
outperforms MARS, which is not as flexible and runs slower. GBM tends to provide the best 
fit, is flexible and is applied directly to the realizations. Consequently, it is the preferred 
method, and the one that is used for the sensitivity analyses for the Clive DU PA. 

2.4.2 Visualization 
Once a GBM has been is constructed, each of the explanatory variables that exist in the model 
can be assigned an SI. The SI is obtained through variance decomposition and can be 
interpreted as the percentage of variability explained in the model by a given explanatory 
variable. The sum of the SI’s across the entire set of explanatory variables in the machine will 
approximately equal the R2 of the linear regression of the process model predictions versus the 
machine learning predictions. The R2 values for this version of the model indicate the high 
degree of predictive power of the machine learning in fitting the process model predictions. 
For a GBM model, the partial dependence is determined through the integration across the 
joint density to obtain a marginal distribution. The integration is performed using a “weighted 
tree traversal” measure that is analogous to more common integration procedures performed 
with Riemann or Lebesgue measures. The vertical axis of the partial dependence plot shows 
the change in the response variable as a function of the changes in the explanatory variable. 

In order to assess the relationship between an individual explanatory variable and the response 
of interest, partial dependence plots are used (Figure 1). The first panel depicts a density 
estimate of the simulated response from the process model as well as the machine goodness-
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of-fit and summary statistics for the response. The percentiles of the response distribution in 
this panel are shaded to provide a context for the partial dependence plots presented in the 
remaining panels. The colors indicate the percentile range of the response as follows: 

1. The 0th - 25th percentile region is shaded orange-brown 

2. The 25th - 50th percentile region is shaded dark yellow-green 
3. The 50th - 75th percentile region is shaded light green 

4. The 75th - 100th percentile region is shaded light blue 
The y-axis scale of the partial dependence plots is in units of the response distribution (the x 
axis of the first panel). Given that each parameter has a different range and strength of 
influence on the response, the y axes of the partial dependence panels depict only the range of 
the response over which a particular parameter is influential. If the original scale of the 
response were maintained on each partial dependence panel, then the influence of the least 
influential parameter would not be visible in many cases. To counteract this scale issue, the 
background of the partial dependence panels is shaded to depict the percentile of the response 
over which the parameter is influential. For example, if the background of the partial 
dependence plot under the partial dependence line is light blue, then that indicates the 
parameter’s influence on the upper end of the response distribution (i.e., the 75th to 100th 
percentile of the response). 

The partial dependence panels in each figure show the distributions of the explanatory 
variables (black line), and the partial dependence curve (blue line) shows changes in the 
response as a function of each explanatory variable. 
The plots show that the distributions for the three input parameters are uniform, and that the 
effects show sensitivity across the entire range of the inputs. The effects are first negative, and 
then positive, which is to be expected given Equation 15. Also note that the linear regression 
methods would not be able to track the non-linearity, and instead fits a straight, horizontal line 
for these parameters, which shows them to be non-sensitive. This is a prime example of why 
methods such as GBM are advantageous. 
Note: 

An implementation of Friedman’s gradient boosting machine approach is available in the R 
statistical software in the gbm package. The gbm package functions were tailored  to generate 
global sensitivity indices and partial dependence visualization of the impact of model input 
parameters on the model response based on a set of realizations from the probabilisticly run 
model. 
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Figure 1.  Sensitivity and Partial Dependence Plots for the GBM fit to the Sobol 
Function. 
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